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Abstract: The main purpose of this paper is to obtain the numerical solution of linear Volterra and Fredholm 

integral equations by using Haar wavelet collocation method. Specifically, a numerical solution of the second kind 

of LinearVolterra and Fredholm integral equations has been discussed.This equation cannot be easily evaluated 

analytically. As a result,an efficient numerical technique has been applied to find the solution which is indeed an 

approximate solution. In this paper,The Haar wavelet collocation methodis used to transform linear Volterra and 

Fredholm integral equations in to a system of linear algebraic equations. The resulting systems of algebraic 

equations are solved by using Gaussian elimination with partial pivoting to compute the Haar coefficients. The 

presented method is verified by means of different problems, where theoretical results are numerically confirmed. 

The numerical results of six test problems, for which the exact solutionsare known,are considered to verify the 

accuracy and the efficiency of the proposed method. The numerical results are compared with the exact solutions 

and the performance of the Haar wavelet collocation methodis demonstrated by calculating the error norm and 

maximum absolute errors for different number collocation points. The computational cost of the proposed 

methods is analyzed by examples and the error analysis is done by Haar wavelet collocation method numerically. 

The convergence of the Haar wavelet collocation methodis ensured at higher level resolution (J).The numerical 

results show that the method is applicable, accurate and efficient. Most of computations are performed using 

MATLAB R2015asoftware. 

Keywords:  Integral equations; system of algebraic equations; Haar wavelets; collocation method. 

1.   INTRODUCTION 

Integral equation (IE) is an equation that includes the unknown function under the integral sign and the exponent of the 

unknown function inside the integral sign is one. Integral equation arises in several problems of science and technology 

and may be obtained directly from physical problems e.g., radiation transfer problems. Theory of integral equations is one 

of the most important branches of mathematical science and also used in mathematical tools and has wide applications in 

both pure and applied mathematics. Several physical situations can be modeled using IEs. The applications of IEs can be 

found in fluid dynamics, solid state physics, plasma physics, mathematical biology and chemical kinetics (Abbasbandy 

and Shivanian, 2011).   

Integral equations appear in the mathematical formulations of a variety of modeling procedures. These include jump 

diffusion and option pricing, fluid dynamics, biomedical areas, chemical kinetics, ecology, control theory of financial 

mathematics, aerospace systems, industrial mathematics, etc. Initial and boundary value problems in integro-differential 

equations have several applications in the study of chemical, physical and biological science. Choi and Lui (1997) studied 

the integro-differential equation arising from an electrochemistry model. So, integral equations occur in many fields of 
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mechanics and mathematical physics. They are also connected with problems in mechanical vibration, theory of analytic 

function, orthogonal systems. 

Integral equations are used as mathematical models for many physical situations and integral equations also occur as 

reformulations of other mathematical problems. Recently a great deal of interest has been focused on the solution of 

integral equations by the wavelet methods, Beylkin et al. (1991) was the first paper in which the Haar wavelet method 

was used to solve integral equations. After that many researches employed this method to solve other types of integral 

equations. The basic idea of the Haar wavelet method is to convert the differential and integral equations into a system of 

algebraic equations. A wavelet is a mathematical function used to divide a given function or continuous-time signal into 

different scale components. Morlet and Grossmann first introduced the concept of wavelets in early 1980s and also, they 

used the French word ondelette, meaning “small wave”. Soon it was transferred to English by translating “onde” into 

“wave”, giving “wavelet”. The study of wavelets has attained the present growth due to mathematical analysis of wavelets 

by Stromberg (1981), (Grossmann and Morlet) (1984) and Meyer (1989). Daubechies (1988) presented a method to 

construct wavelets with compact support and scale functions. A review of the basic properties of the wavelets and the 

decomposition and the reconstruction of functions in terms of the wavelet bases is given by Strang (1989). Many families 

of wavelets have been proposed in the literature. All these wavelet families can be classified as either being an orthogonal 

or biorthogonal family. Each orthogonal wavelet family is characterized by two functions- the mother scaling function 

and the mother wavelet. Among the wavelet families, which are defined by an analytical expression, special attention is 

given to the Haar wavelets. Some notable contributors include Morlet and Grossmann (1984) for formulation of 

continuous wavelet transform (CWT), Stromberg (1981) for early works on discrete wavelet transform (DWT), Meyer 

(1989) for multi-resolution analysis using wavelet transform. In 1910, Alfred Haar introduced the notion of wavelets. The 

Haar wavelet transform is one the earliest examples of what is known now as a compact, dyadic, orthonormal wavelet 

transform. Haar wavelets are made up of pairs of piecewise constant functions and are mathematically the simplest among 

all the wavelet families. A good feature of the Haar wavelets is the possibility to integrate those analytically arbitrary 

times. The Haar wavelets are very effective for treating singularities, since they can be interpreted as intermediate 

boundary conditions. Haar wavelets are easy to handle from the mathematical aspect. Haar wavelets are very effective for 

solving integral equations.  

Many research papers are published by many authors for this purpose. For numerical solutions of linear integral 

equations, traditional quadrature formula methods and spline approximations are used. In the case of these methods 

systems of linear equations must be solved. For big matrices this requires a High number of arithmetic operations and a 

large storage capacity. A lot of computing time is saved if we succeed in replacing the fully populated transform matrix 

with a sparse matrix. Recently, Aziz and Siraj-ul-Islam (2013) presented a new algorithm for numerical solution of 

nonlinear Fredholm and Volterra integral equations using Haar wavelets. 

Lepik (2009) solved the fractional integral equations by the Haar wavelet method. The Haar Wavelet Method is first 

applied to an equivalent integral equations system, where the solution is approximated by Haar wavelet function with 

unknown coefficients. Thus, simplified calculations are presented with necessary basic knowledge of Haar functions and 

their generation. Collocation method is used to evaluate the unknown coefficients and find the approximate solution. 

Shahsavaran (2011) used Haar wavelet with collocation method to solve Volterra integral equations with Weakly Singular 

Kernel. And also, Ghada (2018) applied for numerical solution of linear system of Fredholm integral equation using Haar 

wavelet collocation method. In these studies, the Advantage of using Haar wavelet collocation method is; - 

(𝑖) High Accuracy is obtained already for small number grid points.  

(𝑖𝑖) The obtained solutions are mostly simpler compared with other known methods. 

(𝑖𝑖𝑖) Unlike other numerical methods, Haar wavelet collocation method is found to be accurate, fast, flexible, convenient, 

low computational costs and is computational attractive. For this reason, Haar wavelet collocation method (HWCM) can 

be applied easily to solve linear Fredholm and Volterra integral equations. So, these studies highly motivated me to use 

the Haar wavelet collocation method for solving linear Fredholm and Volterra integral equations. Generally, the purpose 

of this paperused to Haar wavelet collocation method to solve linear Fredholm and Volterra integral equations. The goal is 

to find efficient numerical results that are more applicable to use in the real world. 

http://www.paperpublications.org/journal/IJRRIS
http://www.paperpublications.org/


International Journal of Recent Research in Thesis and Dissertation (IJRRTD) 
Vol. 3, Issue 1, pp: (65-84), Month: January - June 2022, Available at: www.paperpublications.org 

Page | 67 
Paper Publications 

2.   HAAR WAVELET COLLOCATION METHOD FOR LINEAR VOLTERRA AND FREDHOLM 

INTEGRAL EQUATIONS 

In this section, we discussedmore about Haar wavelet collocation method (HWCMS), linear Fredholm and 

Volterraintegral equations. The linear Fredholm and Volterra integral equations are given by the following general form. 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎
𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏(2.0) 

Where 𝝀 is constant, a function 𝑓(𝑥)and kernels 𝑘(𝑥, 𝑡) are given function on the interval 

𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏.𝑢is unknown function which is to be determine. 

We say that integral equation (2.0) it is linear if that which operations on unknown function in equation (2.0) its linear 

operations. If 𝑎and 𝑏are constants then we say this integral equation (2.0) is called linear fredholm integral equation and 

also if the upper limit (𝑏) is variable 𝑥  then integral equation (2.0) is called linear volterra integral equation. 

Wavelet 

The name of wavelet means a small wave. The family of wavelet is a set of mathematical functions that forms an 

orthonormal basis for the space 𝐿2(𝑅)of square integrable functions. Therefore, any square integrable function 𝑔 ∈ 𝐿2(𝑅) 

can be written as an infinite series whose terms are members of the wavelet family multiplied by some constants. Such a 

series is called wavelet representation of the function 𝑔. 

Wavelet collocation method (WCM) 

Recently, wavelet collocation method (WCM) got attention of many researchers to find the numerical solution of different 

problems. WCM is simply applicable and provides more efficient numerical solution. Let𝐼 = [𝑎, 𝑏] be a closed interval 

and take a mathematical model which is defined on the interval 𝐼.We will use the following formula for the interval 𝐼 

which is further divided into subintervals: 

𝑥𝑗 = 𝑎 + (𝑏 − 𝑎)
𝑗 − 0.5

𝑁
 ,        𝑗 = 1,2, … , 𝑁 

Where 𝑁  is a positive integer and the points 𝑥𝑗 , 𝑗 = 1,2, … , 𝑁  are known as collocation points (CPs). In WCM the 

unknown function isapproximated using wavelets and then these approximations are substituted in the given equations. 

With the help of collocation points, the given equation can be converted into a system of algebraic equations.  

Haar wavelet 

Morlet (1982) first introduced the idea of wavelets as a family of functions constructed from dilation and translation of a 

single function called the “mother wavelet”. The family of Haar wavelet falls into the category of those wavelets which 

have compact support. Haar wavelet functions have been used from 1910 and were introduced by the Hungarian 

mathematician Alfred Haar (1910). The Haar functions are a family of switched rectangular wave forms where amplitudes 

can differ from one function to another. The Haar wavelet family for x ∈ [0, 1) is defined as follows (Lepik, 2007). 

ℎ𝑖(𝑥) = {

1,       for  𝑥 𝜖[𝜏1, 𝜏2)

−1,      for  𝑥 𝜖 [𝜏2, 𝜏3)

0,             elsewhere 

, 𝑖 = 2.3, …, (2.1) 

where 

𝜏1 =
𝑘

𝑚
, 𝜏2  =

𝑘+0.5

𝑚
, 𝜏3 =

𝑘+1

𝑚
 

In the above characterization, we have theinteger 𝑚 = 2𝑗 , where 𝑗 = 0, 1, 2, 3… . . . 𝐽. The 

Integer𝐽 denotes the maximal level of resolution of the Haar wavelet. Similarly, the range of the integer 𝑘 is given as 𝑘 =

0,1,2, …𝑚 − 1. The integer 𝑘 here acts as the translation parameter. The relation between the integers 𝑖, 𝑚 and  𝑘 is 

given by the equation 𝑖 = 𝑚 + 𝑘 + 1.In the case, minimal values of 𝑖is 𝑚 = 1, 𝑘 = 0,m=1, we have𝑖 = 2. The maximal 

values of 𝑖is  𝑖 = 2𝑀 = 2𝐽+1. Where 𝑀 = 2𝐽 .it is assumed the value of 𝑖 = 1, corresponds to the scaling function for the 

family of Haar wavelet over the interval in [0, 1]is defined as. 

ℎ1(𝑥) = {
1, for  0 ≤ 𝑥 ≤ 1 ,
0,          otherwise

(2.2) 
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Usually, the Haar wavelets are defined for the interval 𝑡 ∈  [0,1) but in general case 𝑡 ∈ [𝐴, 𝐵], we divide the interval 

[𝐴, 𝐵] into 𝑚 equal subintervals; each of the width ∆𝑡 = (𝐵 − 𝐴)/𝑚. In this case, the orthogonal set of Haar functions is 

defined in the interval [𝐴, 𝐵] by (Saha Ray, 2012). 

ℎ0(𝑡) =  {
1, for 𝐴 ≤ 𝑡 ≤ 𝐵 ,
0,         elsewhere

(2.3) 

and 

ℎ𝑖(𝑡) = {
1,       for𝜏1(𝑖) ≤ 𝑡 < 𝜏2(𝑖)

−1,    for 𝜏2(𝑖) ≤ 𝑡 < 𝜏3(𝑖)
0,                 otherwhere

(2.4) 

where 

𝜏1(𝑖) = 𝐴 + (
𝑘−1

2𝑗
) (𝐵 − 𝐴) = 𝐴 + (

𝑘−1

2𝑗
)𝑚∆𝑡, 

𝜏2(𝑖) = 𝐴 + (
𝑘 − 0.5

2𝑗
) (𝐵 − 𝐴) = 𝐴 + (

𝑘 − 0.5

2𝑗
)𝑚∆𝑡, 

𝜏3(𝑖) = 𝐴 + (
𝑘

2𝑗
) (𝐵 − 𝐴) = 𝐴 + (

𝑘

2𝑗
)𝑚∆𝑡 

For 𝑖 = 1,2,3, … ,𝑚, 𝑚 = 2𝐽 and 𝐽 is a positive integer which is called the maximum level of resolution. Here 𝑗 𝑎𝑛𝑑 𝑘 

represent the integer decomposition of the index 𝑖. 

i.e, 𝑖 = 𝑘 + 2𝑗 − 1, 0 ≤ 𝑗 < 𝑖 𝑎𝑛𝑑 1 ≤ 𝑘 < 2𝑗 + 1. 

 Function Approximation 

Any function 𝑦(𝑡)𝜖 𝐿2([0,1]) can be expanded into Haar wavelets by (Chen and Hsiao, 1997) 

          𝑦(𝑡) = 𝑐0ℎ0(𝑡)+𝑐1ℎ1(𝑡) + 𝑐2ℎ2(𝑡) + ⋯,(2.5)           

where 

𝑐𝑗 = ∫𝑦(𝑡)

1

0

ℎ𝑗(𝑡)𝑑𝑡 

If  𝑦(𝑡) is approximated as a piecewise constant in each subinterval, the sum in Eq. (2.5) may be terminated after 𝑚 terms 

and consequently we can write discrete version in the matrix form as  

𝑌 ≈ ∑ 𝑐𝑖ℎ𝑖(𝑡𝑙)

𝑚−1

𝑖=0

= 𝑐𝑚
𝑇𝐻𝑚 

where 

  𝑌 and𝑐𝑚
𝑇are the m-dimensional row vectors. 

Here H is the Haar wavelet matrix of order 𝑚 defined by 𝐻 = [ℎ0  ℎ1  ℎ2, … ,   ℎ𝑚−1]
𝑇 , i.e. 

𝐻 = ⌈

ℎ0
ℎ1
⋮

ℎ𝑚−1,

⌉ =

[
 
 
 
ℎ0,0 ℎ0,1    ⋯ ℎ0,𝑚−1
ℎ1,0 ℎ1,1         ⋯ ℎ1,𝑚−1
⋮ ⋮ ⋱ ⋮

ℎ𝑚−1,0 ℎ𝑚−1,1 ⋯ ℎ𝑚−1,𝑚−1]
 
 
 
 

whereℎ0,ℎ1,… , ℎ𝑚−1,are discrete form of the Haar wavelet bases. 

The collocation points are given by  

𝑡𝑙 = 𝐴 + (𝑙 − 0.5)∆𝑡, 𝑙 = 1,2, …, 

Haar wavelet functions satisfy the following properties 
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∫ ℎ𝑖(𝑥)ℎ𝑙

1

0

(𝑥)𝑑𝑥 = {
2−𝑗 , 𝑖𝑓    𝑖 = 𝑙 = 2𝑗 + 𝑘
0,           𝑖𝑓                   𝑖 ≠ 1

 

and 

∫ ℎ𝑖(𝑥)𝑑𝑥 =
1

0

{
1,          𝑖𝑓 𝑖 = 1 
0,   𝑖𝑓   𝑖 = 2,3, …

 

Following Chen and Hsiao (Chen and Hsiao, 1997) and (Chen and Hsiao, 1999) the coefficients matrix 𝐻𝑖𝑙 = ℎ𝑖𝑙(𝑡𝑙) is 

introduced (this is a 2M x 2M matrix). A function u (t) which is defined in the interval  𝑥 ∈ [𝑎, 𝑏] can be expanded into 

the Haar wavelet series: 

𝑢(𝑥) = ∑ 𝑎𝑖
2𝑚
𝑖=1 ℎ𝑖(𝑥).                                         (2.6) 

whereis the wavelet coefficient. The discrete form of this equation is  

𝑢(𝑥𝑙) = ∑ 𝑎𝑖
2𝑚
𝑖=1 ℎ𝑖(𝑥𝑙) = ∑ 𝑎𝑖

2𝑚
𝑖=1 𝐻𝑖𝑙(2.8) 

or a matrix presentation𝑢 = 𝑎𝐻, where u and 𝑎 are 2M dimensional row vector 

Haar wavelet collocation method for Fredholm integral equation 

The linear Fredholm integral equation is of the form  

         𝑢(𝑥) − ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)d𝑡 = 𝑓(𝑥)
1

0

  , 𝑥 ∈ [0,1]                                                               (2.9) 

Where the kernel  𝑘 and the right-hand function 𝑓 are prescribed and 𝑢is unknown functions.       If we use the Haar 

Wavelet Collocation Method (HWCM) by approximating 𝑢(𝑥) as the Haar wavelet series 

               𝑢(𝑥) =  ∑𝑎𝑖ℎ𝑖(𝑥)

𝑁

𝑖=1

                                                                                                                (3.0) 

where the expansion coefficients 𝑎𝑖are unknowns and are determined as follows: 

∑𝑎𝑖ℎ𝑖(𝑥)

𝑁

𝑖=1

− ∫ 𝐾(𝑥, 𝑡)∑𝑎𝑖ℎ𝑖(𝑡)

𝑁

𝑖=1

d𝑡 = 𝑓(𝑥)
1

0

 

or 

∑𝑎𝑖ℎ𝑖(𝑥)

𝑁

𝑖=1

− ∑𝑎𝑖

𝑁

𝑖=1

𝐺𝑖(𝑥) = 𝑓(𝑥) 

where 

                        𝐺𝑖(𝑥) = ∫ 𝐾(𝑥, 𝑡)ℎ𝑖(𝑡)d𝑡
1

0

                                                                                          (3.1) 

 

By evaluating the above equations at discrete locations, also known as, collocation points  

𝑥𝑗 =
𝑗 − 0.5

𝑁
 

Where𝑁 =  2𝐽+1 and 𝐽 is the maximum level of resolution for Haar wavelets (HWs). So that 

∑𝑎𝑖ℎ𝑖(𝑥𝑗)

𝑁

𝑖=1

− ∑𝑎𝑖

𝑁

𝑖=1

𝐺𝑖(𝑥𝑗) = 𝑓(𝑥𝑗) 
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 Let’s we claim that  ℎ𝑖(𝑥𝑗) and 𝐺𝑖(𝑥𝑗) are elements of the coefficient 𝑁 ×  𝑁 matrix H and operational 𝑁 ×  𝑁  matrix G, 

respectively, such that  ℎ𝑖(𝑥𝑗) = 𝐻𝑖𝑗  and𝐺𝑖(𝑥𝑗) = 𝐺𝑖𝑗. In addition, we denote 𝑓(𝑥𝑗) as components of a column vector �⃗� 

such that 𝑓(𝑥𝑗) = 𝐹𝑗 

∑𝑎𝑖𝐻𝑖𝑗

𝑁

𝑖=1

− ∑𝑎𝑖

𝑁

𝑖=1

𝐺𝑖𝑗 = 𝐹𝑗 

In matrix notation, we can rewrite it as 

�⃗�𝑇(𝐻 − 𝐺) =  �⃗�𝑇(3.2) 

whose transpose eq. (3.2), simply becomes  

(𝐻 − 𝐺)𝑇�⃗� =  �⃗�                                                                                                                       (3.3) 

Where, �⃗� is the column vector of expansion coefficients: �⃗� = (𝑎1𝑎2⋯ 𝑎𝑁)
𝑇 .The system eq. (3.3) means simply, we write 

in this form 

𝐴�⃗� = �⃗⃗� 

Where 

𝐴 = (𝐻 − 𝐺)𝑇 ,�⃗�  = �⃗�and 𝑏⃗⃗ ⃗  = �⃗�. 

𝐴is the coefficient matrix and 𝑏 is the right hand column vector. 

From the above system of equation (3.3)is to find the Haar coefficient �⃗�   we use the following algorithm of Gaussian 

elimination with partial pivoting.  

n = size (A, 1) we getting n 

A = [A, b] this produces the augmented matrix 

Tolerance = 1 × 10−12 

Step-1 elimination process starts  

For 𝑖 = 1  to 𝑛 − 1 

𝑝 = 𝑖 

Step-2 comparison to select the pivot  

For  𝑗 = 𝑖 + 1 to 𝑛 

If |𝐴(𝑗, 𝑖)| > |𝐴(𝑖, 𝑖)| 

 𝑈 = 𝐴(𝑖, : ) 

𝐴(𝑖, : ) = 𝐴(𝑗, : ) This shows 𝑖 − 𝑡ℎrow is equal with 𝑗 − 𝑡ℎrow 

𝐴(𝑗, : ) = 𝑈 

Step-3 checking for nullity of the pivots  

While |𝐴(𝑝, 𝑖)| < tolerance and 𝑝 ≤ 𝑛 

𝑝 = 𝑝 + 1 

if𝑝 = 𝑛 + 1 then gives “no unique solution” else if 𝑝 

𝑇 = 𝐴(𝑖, : ) 

𝐴(𝑖, : ) = 𝐴(𝑝, : )this shows 𝑖 − 𝑡ℎrow is equal with 𝑝 − 𝑡ℎrow 

𝐴(𝑝, : ) = 𝑇 

For 𝑗 = 𝑖 + 1 to 𝑛 
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𝑚 = 𝐴(𝑗, 𝑖)/𝐴(𝑖, 𝑖) 

For 𝑘 = 𝑖 + 1  to 𝑛 + 1 

𝐴(𝑗, 𝑘) = 𝐴(𝑗, 𝑘)  −  𝑚 ×  𝐴(𝑖, 𝑘) 

Step-4 checking for non-zero of last entry 

If 𝐴(𝑛, 𝑛) = 0 then gives “no unique solution”  

Step-5 using backward substitution 

𝑥(𝑛) = 𝐴(𝑛, 𝑛 +  1)/𝐴(𝑛, 𝑛) 

 For 𝑖 = 𝑛 − 1 to −1 to 1 

  𝑠 = 0 

  For 𝑗 = 𝑖 + 1  to 𝑛 

𝑠 = 𝑠 + 𝐴(𝑖, 𝑗)  ×  𝑥(𝑗) 

𝑥(𝑖) = (𝐴(𝑖, 𝑛 +  1)  −  𝑠)/𝐴(𝑖, 𝑖) 

Let’s express the integral functions 𝐺𝑖(𝑥) upon substituting the expressions of Haar Wavelets. For 𝑖 = 1 

𝐺1(𝑥) =

{
 

 ∫ 𝐾(𝑥, 𝑡)d𝑡,                for 0 ≤ 𝑥 ≤ 1,
1

0

0,             elsewhere

 

and for 𝑖 ≥  2 

𝐺𝑖(𝑥) =

{
 
 

 
 
∫ 𝐾(𝑥, 𝑡)d𝑡 − ∫ 𝐾(𝑥, 𝑡)d𝑡

𝜏3

𝜏2

,    for 0 ≤ 𝑥 ≤ 1 ,
𝜏2

𝜏1

0,                 elsewhere                                          

 

After we get integral functions  𝐺𝑖(𝑥) then we solve the systems of matrix of eq. (3.3) by using Gaussian elimination with 

partial pivoting and we get Haar coefficients�⃗�. Once we get the Haar coefficients of �⃗�  we can easily calculate the 

approximate solution of 𝑢(𝑥) at the collocation points. That is, 

 

𝑢(𝑥𝑗) =  ∑𝑎𝑖ℎ𝑖(𝑥𝑗),            𝑗 = 1, 2,⋯𝑁  

𝑁

𝑖=1

 

which can be rewritten as  

𝑢(𝑥𝑗) =  ∑𝑎𝑖𝐻𝑖𝑗 ,            𝑗 = 1, 2,⋯𝑁  

𝑁

𝑖=1

 

In matrix notation, it becomes  

�⃗⃗�𝑇 = �⃗�𝑇𝐻                                                                                                                           (3.4) 

By taking the transpose of the above eq. (3.4), we obtain  

�⃗⃗� = 𝐻𝑇�⃗�                                                                                                                              ( 3.5) 

where 

�⃗⃗� = (𝑢1𝑢2⋯𝑢𝑁)
𝑇 = (𝑢(𝑥1), 𝑢(𝑥2),⋯𝑢(𝑥𝑁))

𝑇
. Here 𝑥1, 𝑥2, ⋯ are the collocation points between 0 and 1. 
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Haar wavelet collocation method for Volterra integral equation 

The linear Volterra integral equation is of the form  

     𝑢(𝑥) − ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)d𝑡 = 𝑓(𝑥)   (3.6)
𝑥

0

 

Where the kernel  𝑘 and the right-hand function 𝑓 are prescribed and 𝑢is unknown functions.        

If we use the Haar Wavelet Collocation Method (HWCM) by approximating 𝑢(𝑥) as Haar wavelet series 

              𝑢(𝑥) =  ∑𝑎𝑖ℎ𝑖(𝑥)                                                                                                                 (3.7)

𝑁

𝑖=1

 

where the expansion coefficients 𝑎𝑖are unknowns and are determined as follows: 

∑𝑎𝑖ℎ𝑖(𝑥)

𝑁

𝑖=1

− ∫ 𝐾(𝑥, 𝑡)∑𝑎𝑖ℎ𝑖(𝑡)

𝑁

𝑖=1

d𝑡 = 𝑓(𝑥)
𝑥

0

 

or 

∑𝑎𝑖ℎ𝑖(𝑥)

𝑁

𝑖=1

− ∑𝑎𝑖

𝑁

𝑖=1

𝐺𝑖(𝑥) = 𝑓(𝑥) 

where 

𝐺𝑖(𝑥) = ∫ 𝐾(𝑥, 𝑡)ℎ𝑖(𝑡)d𝑡                                                                                            (3.8)
𝑥

0

 

By evaluating the above equations at discrete locations, also known as, collocation points  

𝑥𝑗 =
𝑗 − 0.5

𝑁
 

Where𝑁 =  2𝐽+1 and 𝐽 is the maximum level of resolution for Haar wavelets. So that 

∑𝑎𝑖ℎ𝑖(𝑥𝑗)

𝑁

𝑖=1

− ∑𝑎𝑖

𝑁

𝑖=1

𝐺𝑖(𝑥𝑗) = 𝑓(𝑥𝑗) 

 If we claim that  ℎ𝑖(𝑥𝑗) and 𝐺𝑖(𝑥𝑗) are elements of the coefficient 𝑁 ×  𝑁 matrix H and operational 𝑁 ×  𝑁  matrix G, 

respectively, such that  ℎ𝑖(𝑥𝑗) = 𝐻𝑖𝑗  and𝐺𝑖(𝑥𝑗) = 𝐺𝑖𝑗. In addition, we denote 𝑓(𝑥𝑗) as components if a column vector �⃗� 

such that 𝑓(𝑥𝑗) = 𝐹𝑗 

∑𝑎𝑖𝐻𝑖𝑗

𝑁

𝑖=1

− ∑𝑎𝑖

𝑁

𝑖=1

𝐺𝑖𝑗 = 𝐹𝑗 

In matrix notation, we can rewrite it as 

�⃗�𝑇(𝐻 − 𝐺) =  �⃗�𝑇                        (3.9) 

whose transpose simplyeq. (3.9) becomes  

(𝐻 − 𝐺)𝑇�⃗� =  �⃗�                                                                                                                      (4.0) 

where,�⃗� is the column vector of expansion coefficients:�⃗� = (𝑎1𝑎2⋯𝑎𝑁)
𝑇 .The system eq. (4.0) means simply, we write in 

this form 

𝐴�⃗� = �⃗⃗� 

where 

𝐴 = (𝐻 − 𝐺)𝑇 ,�⃗�  = �⃗�and  �⃗⃗�  = �⃗�. 
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𝐴is the coefficient matrix and 𝑏 is the right hand column vctor. 

From the above system of equation (3.3) is to find the Haar coefficient �⃗�   we use the following algorithm of Gaussian 

elimination with partial pivoting.  

n = size (A, 1) we getting n 

A = [A, b] this produces the augmented matrix 

Tolerance = 1 × 10−12 

Step-1 elimination process starts  

For 𝑖 = 1  to 𝑛 − 1 

𝑝 = 𝑖 

Step-2 comparison to select the pivot  

For  𝑗 = 𝑖 + 1 to 𝑛 

If |𝐴(𝑗, 𝑖)| > |𝐴(𝑖, 𝑖)| 

 𝑈 = 𝐴(𝑖, : ) 

 

𝐴(𝑖, : ) = 𝐴(𝑗, : ) This shows 𝑖 − 𝑡ℎrow is equal with 𝑗 − 𝑡ℎrow 

𝐴(𝑗, : ) = 𝑈 

 

Step-3 checking for nullity of the pivots  

   While |𝐴(𝑝, 𝑖)| < tolerance and 𝑝 ≤ 𝑛 

𝑝 = 𝑝 + 1 

if𝑝 = 𝑛 + 1 then gives “no unique solution” else if 𝑝 = 𝑖 

𝑇 = 𝐴(𝑖, : ) 

𝐴(𝑖, : ) = 𝐴(𝑝, : )this shows 𝑖 − 𝑡ℎrow is equal with 𝑝 − 𝑡ℎrow 

𝐴(𝑝, : ) = 𝑇 

For 𝑗 = 𝑖 + 1 to 𝑛 

𝑚 = 𝐴(𝑗, 𝑖)/𝐴(𝑖, 𝑖) 

For 𝑘 = 𝑖 + 1  to 𝑛 + 1 

𝐴(𝑗, 𝑘) = 𝐴(𝑗, 𝑘)  −  𝑚 ×  𝐴(𝑖, 𝑘) 

Step-4 checking for non-zero of last entry 

If 𝐴(𝑛, 𝑛) = 0 then gives “no unique solution”  

Step-5 using backward substitution 

𝑥(𝑛) = 𝐴(𝑛, 𝑛 +  1)/𝐴(𝑛, 𝑛) 

 For 𝑖 = 𝑛 − 1 to −1 to 1 

 𝑠 = 0 

  For 𝑗 = 𝑖 + 1  to 𝑛 

𝑠 = 𝑠 + 𝐴(𝑖, 𝑗)  ×  𝑥(𝑗) 

𝑥(𝑖) = (𝐴(𝑖, 𝑛 +  1)  −  𝑠)/𝐴(𝑖, 𝑖) 
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Let’s express the integral functions 𝐺𝑖(𝑥) upon substituting the expressions of Haar Wavelets. For 𝑖 = 1 

𝐺1(𝑥) =

{
 

 ∫ 𝐾(𝑥, 𝑡)d𝑡,                for 0 ≤ 𝑥 ≤ 1,
𝑥

0

0,                                      elsewhere

 

and for 𝑖 ≥  2 

𝐺𝑖(𝑥) =

{
 
 
 
 

 
 
 
 
0,                                                     for  0 ≤ 𝑥 ≤ 𝜏1,

∫ 𝐾(𝑥, 𝑡)d𝑡,                                   for𝜏1 ≤ 𝑥 ≤ 𝜏2,
𝑥

𝜏1

∫ 𝐾(𝑥, 𝑡)d𝑡 − ∫ 𝐾(𝑥, 𝑡)d𝑡
𝑥

𝜏2

,   for𝜏2 ≤ 𝑥 ≤ 𝜏3,
𝜏2

𝜏1

∫ 𝐾(𝑥, 𝑡)d𝑡 − ∫ 𝐾(𝑥, 𝑡)d𝑡
𝜏3

𝜏2

,    for𝜏3 ≤ 𝑥 ≤ 1.
𝜏2

𝜏1

 

After we get integral functions  𝐺𝑖(𝑥) then we solve the systems of matrix of eq. (4.0) by using Gaussian elimination with 

partial pivoting and we get Haar coefficients�⃗�. Once we get the Haar coefficients of  �⃗� we can easily calculate the 

approximate solution of 𝑢(𝑥) at the collocation points. That is, 

 

𝑢(𝑥𝑗) =  ∑𝑎𝑖ℎ𝑖(𝑥𝑗),            𝑗 = 1, 2,⋯𝑁  

𝑁

𝑖=1

 

which can be rewritten as  

𝑢(𝑥𝑗) =  ∑𝑎𝑖𝐻𝑖𝑗 ,            𝑗 = 1, 2,⋯𝑁  

𝑁

𝑖=1

 

In matrix notation, it becomes  

�⃗⃗�𝑇 = �⃗�𝑇𝐻                                                                                                                                       (4.1) 

By taking the transpose of the eq. (4.1), we obtain  

�⃗⃗� = 𝐻𝑇�⃗�                                                                                                                                        (4.2) 

where �⃗⃗� = (𝑢1𝑢2⋯𝑢𝑁)
𝑇 = (𝑢(𝑥1), 𝑢(𝑥2),⋯𝑢(𝑥𝑁))

𝑇
. Here 𝑥1, 𝑥2, ⋯ are the collocation points between 0 and 1.  

3.   NUMERICAL RESULT AND DISCUSSION 

In this section, we numerically solvedifferent test Examples by using Haar wavelet collocation method.We have 

implemented Haar wavelet collocation method (HWCM) to solve six test Examples, from them three-test Examples for 

linear Fredholm integral equations and also threetest Examples for Volterra integral equations. Error functions are 

presented to verify the accuracy and efficiency of the following numerical results.In order to show the efficiency and 

accuracy of Haar wavelet collocation method, we define three kinds of errors, absolute error (𝐸), norm error (𝐸2)and 

maximum absolute error (𝐸𝑗). 

𝐸 = |𝑈𝑒(𝑥𝑗) − 𝑈𝑎(𝑥𝑗)| 

and 

𝐸2 = (∑|𝑢𝑎(𝑥𝑗) − 𝑢𝑒(𝑥𝑗)|
2

𝑁

𝑗=1

)
1

2and  𝐸𝐽 = max
1 ≤ j ≤ N

{|𝑢𝑎(𝑥𝑗) − 𝑢𝑒(𝑥𝑗)|} 

where 𝑢𝑎(𝑥)  is approximate solution and  𝑢𝑒(𝑥) is exact solution,all numerical results have been done by 

MATLABR2015a software. 
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Numerical Examples for linear Fredholm integral equations 

The procedure that used to solve the Examples of linear Fredholm integral equation shows simply we put as following 

Step 1 we converts theExamples of linear Fredholm integral equation into the linear system of algebraic equations by 

using Haar wavelet collocation method. 

Step 2 by using Gaussian elimination with partial pivoting we get the Haar coefficient of the vector  �⃗� from the system of 

algebraic equation (3.3). 

Step 3 after we get the Haar coefficients we can easily obtain the approximate solution  𝑢(𝑥) of linear Fredholm integral 

equation from the equation (3.5). 

Example 1.(Reihani and Abadi, 2007) considerthe following linear fredholm integral equation of the second kind. 

𝑢(𝑥) − ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)d𝑡 = 𝑓(𝑥)
1

0

 

where 

𝐾(𝑥, 𝑡) =  −
𝑒2𝑥−

5

3
𝑡

3
        𝑓(𝑥) =  𝑒2𝑥+

1

3 

and its exact solution is given by  

𝑢(𝑥) = 𝑒2𝑥. 

From the Example 1, we get the following numerical results. 

Table 1: The maximum absolute error 𝑬𝑱 and norm error 𝑬𝟐for the test Example 1 in different level of resolution. 

𝐽 𝑁 𝐸2 𝐸𝐽 Computational Time(sec) 

2 8 5.0689 × 10−3 3.2091 × 10−3 0.157345 

3 16 1.7991 × 10−3 8.5402 × 10−4 0.554702 

4 32 6.3671 × 10−4 2.2028 × 10−4 2.163138 

5 64 2.2517 × 10−4 5.5938 × 10−5 8.771016 

6 128 7.9613 × 10−5 1.4094 × 10−5 35.58266 

7 256 2.8148 × 10−5 3.5373 × 10−6 141.0300 

 

Figure 1: Comparisonof approximate and exact solution of Example 1 for N=8,N=16, N=32,N=64. 
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Figure 2: Absolute error of Example 1 for N=8, N=16, N=32, N=64. 

Example 2: consider the following linear Fredholm integral equation of the second kind (Wazwaz, 2011): 

𝑢(𝑥) − ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)d𝑡 = 𝑓(𝑥)
1

0

 

Where 

𝐾(𝑥, 𝑡) =  −2𝑒𝑥+𝑡         𝑓(𝑥) =  𝑒𝑥+2 

And its exact solution is given by  

𝑢(𝑥) = 𝑒𝑥. 

From the Example 2, we get the following numerical results. 

Table 2: The maximum absolute error 𝑬𝑱and  norm error 𝑬𝟐 for test Example 2 in different level of resolution. 

𝐽 𝑁 𝐸2 𝐸𝐽 Computational Time(sec) 

2 8 8.5268 × 10−3 4.3128 × 10−3 0.161256 

3 16 3.0175 × 10−3 1.1124 × 10−3 0.605253 

4 32 1.0671 × 10−3 2.8247 × 10−4 2.357855 

5 64 3.7730 × 10−4 7.1170 × 10−5 9.104379 

6 128 1.3340 × 10−4 1.7862 × 10−5 34.50493 

7 256 4.7163 × 10−5 4.4743 × 10−6 144.0404 
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Figure 3: Comparison of approximate and exact solution of Example 2 for N=8, N=16, N=32, N=64. 

 

Figure 4: Absolute error of Example 2 for N=8, N=16, N=32, N=64. 
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Example 3: consider the following linear Fredholm integral equation of the second kind (from internet source):  

𝑢(𝑥) − ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)d𝑡 = 𝑓(𝑥)
1

0

 

where 

𝐾(𝑥, 𝑡) = −2𝑒𝑥−𝑡          𝑓(𝑥) = 2𝑥𝑒𝑥 

and its exact solution is given by  

𝑢(𝑥) = 𝑒𝑥 (2𝑥 −
2

3
) 

From the Example 3, we get the following numerical results. 

Table 3: The maximum absolute error 𝑬𝑱 and  𝑬𝟐 norm error for test Example 3 in different level of resolution (𝑱). 

𝐽 𝑁 𝐸2 𝐸𝐽 Computational Time(sec) 

2 8 7.3026 × 10−4 3.6935 × 10−4     0.153789 

3 16 2.5848 × 10−4 9.5287 × 10−5     0.556822 

4 32 9.1414 × 10−5 2.4198 × 10−5     2.146815 

5 64 3.2322 × 10−5 6.0970 × 10−6     9.186887 

6 128 1.1428 × 10−5 1.5302 × 10−6     37.88264 

7 256 4.0404 × 10−6 3.8330 × 10−7    141.6325 

 

 

Figure 5: Comparison of approximate and exact solution of Example 3 forN=8, N=16, N=32, N=64. 
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Figure 6: Absolute error of Example 3 for N=8, N=16, N=32, N=64. 

As we can see the result of the above Table 1, Table 2 and  Table 3, The best performance of the Haar wavelet collocation 

method for N=256. So, as the number of N increases, the error decreases and takes more computational time. From this 

we conclude that the one that have small number N are fast convergence. The accuracy of the proposed method is easily 

observed from the above Tables. The Table shows the maximum absolute error (𝐸𝐽)and norm error 𝐸2at different level of 

resolution of 𝐽ranging from 1 to 7 to estimate the efficiency and the accuracy of the Haar wavelet collocation method. In 

the above figure 1, figure 3 and figure 5, the graphs are overlappingthis shows excellent agreement of the numerical 

results, obtained by using Haar wavelet collocation method with the exact solution. In addition, from the Table 1, Table 2 

and Table 3, as we increase the level of resolution (𝐽) , the number of collocation points increases, the number of the 

dimension N increases, error decreases and computational time increases, so does the accuracy of the results of the Haar 

wavelet collocation method. However, the fast convergence of the method, as we can see the Table 1, Table 2 and Table 

3, makes it efficient for relatively small values of N, saves the computational time. 

Numerical Examples for linear Volterra integral equations 

The procedure that used to solve the Examples of linear Volterra integral equation shows simply we put as following 

Step 1 we converts the Examples of linear Volterra integral equation into the linear system of algebraic equations by using 

Haar wavelet collocation method. 

Step 2 by using Gaussian elimination with partial pivoting we get the Haar coefficient of the vector  �⃗� from the system of 

algebraic equation (4.0). 

Step 3 after we get the Haar coefficients we can easily obtain the approximate solution  𝑢(𝑥)of linear Volterra integral 

equation from the equation (4.2). 

Example 4: considerthe following linear Volterra integral equation of the second kind (from the internet source):  

𝑢(𝑥) − ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)d𝑡 = 𝑓(𝑥)
𝑥

0

 

where 

𝐾(𝑥, 𝑡) =  𝑥𝑡;          𝑓(𝑥) =  𝑥5 −
𝑥8

7
 

and its exact solution is given by  

𝑢(𝑥) = 𝑥5. 

From the Example 4, we get the numerical results as the following. 
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Table 4: The maximum absolute error 𝑬𝑱 and norm error 𝑬𝟐 for test Example 4 in different  level of resolution(𝑱). 

𝐽 𝑁 𝐸2 𝐸𝐽 Computational Time(sec) 

2 8 4.8160 × 10−3 4.4184 × 10−3  0.126229 

3 16 1.7782 × 10−3 1.3607 × 10−3 0.351672 

4 32 6.3551 × 10−4 3.7663 × 10−4 1.268755 

5 64 2.2529 × 10−4 9.9027 × 10−5 4.781148 

6 128 7.9707 × 10−5 2.5386 × 10−5 19.50743 

7 256 2.8185 × 10−5 6.4264 × 10−6 74.66866 

 

 

Figure 7:  Comparison of approximate and exact solution of Example 4 for N=8, N=16, N=32, N=64. 

 

Figure 8: Absolute error of Example 4 for N=8, N=16, N=32, N=64. 
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Example 5: considerthe following linear Volterra integral equation of the second kind (from internet source):  

𝑢(𝑥) − ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)d𝑡 = 𝑓(𝑥)
𝑥

0

 

 

where 

𝐾(𝑥, 𝑡) = −
𝑡

1 + 𝑥2
 ;         𝑓(𝑥) =

1

1 + 𝑥2
 

 

and its exact solution is given by  

𝑢(𝑥) = (1 + 𝑥2)−3/2 

 

From the Example 5, we get the numerical results as the following. 

Table 5: The maximum absolute error 𝑬𝑱 and norm error 𝑬𝟐 for test Example 5 in different  level of resolution(𝑱). 

𝐽 𝑁 𝐸2 𝐸𝐽 Computational Time(sec) 

  2       8 5.4538 × 10−4 2.7875 × 10−4 0.132605 

  3      16 1.9359 × 10−4 7.0247 × 10−5 0.346192 

  4      32  6.8512 × 10−5 1.7546 × 10−5 1.262279 

  5      64 2.4229 × 10−5 4.3921 × 10−6 4.762492 

  6     128 8.5667 × 10−6 1.0984 × 10−6 19.05888 

  7     256 3.0288 × 10−6 2.7461 × 10−7 76.02191 

 

 

Figure 9: Comparison of approximate and exact solution of Example 5 for N=8, N=16, N=32, N=64. 
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Figure 10: Absolute error of Example 5 for N=8, N=16, N=32, N=64. 

Example 6: consider the following linear Volterra integral equation of the second kind (Babolian and Davari, 2005):  

𝑢(𝑥) − ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)d𝑡 = 𝑓(𝑥)
𝑥

0

 

where 

𝐾(𝑥, 𝑡) =  𝑡 − 𝑥        𝑓(𝑥) =  𝑥 

and its exact solution is given by  

𝑢(𝑥) = sin 𝑥 

From the Example 6, we get the numerical results as the following. 

Table 6: The maximum absolute error 𝑬𝑱 and norm error 𝑬𝟐 for test Example 6 in different level of resolution(𝑱). 

𝐽 𝑁 𝐸2 𝐸𝐽 Computational Time (sec) 

2 8 1.8223 × 10−3 9.6613 × 10−4 0.117262 

3 16 6.4547 × 10−4 2.4576 × 10−4 0.345720 

4 32 2.2831 × 10−4 6.1914 × 10−5 1.229137 

5 64 8.0729 × 10−5 1.5534 × 10−5 4.909744 

6 128 2.8543 × 10−5 3.8904 × 10−6 20.02375 

7 256 1.0092 × 10−5 9.7342 × 10−7 76.53057 

 

 

Figure 11:  Comparison of approximate and exact solution of Example 6 for N=8, N=16, N=32, N=64. 
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Figure 12: Absolute error of Example 6 for N=8, N=16, N=32, N=64. 

From the Example 4, Example 5 and Example 6, we can be easily observed that the Haar wavelet collocation method 

(HWCM) can treat the problems easily, even if, when we see the Table 4,Table 5 and Table 6 and the graph of the Figure 

7, Figure 9 and Figure 11, the resulting are excellent agreement with the exact solutions. Thus, as we can see the above 

Figure 7, Figure 9 and Figure 11, the graphs are overlapping this implies the solutions we obtained by Haar wavelet 

collocation method gives more accurate results as well as the results from accurate solutions.Table 4, Table 5 and Table 6 

shows the maximum absolute error of the proposed method for different numbers of collocation points. From the Table 4, 

Table 5 and Table 6, we can see that the performances of the present method are better as the number of collocation points 

increases. The maximum absolute errors are decreased to order 10−7 for just N=256 and the numbers of collocation 

points which shows the better performance of the proposed in terms of accuracy, also the proposed method is getting 

better and better as the number of collocation points increases. The maximum absolute error (𝐸𝐽)   and norm error 

(𝐸2)determined the accuracy of Haar wavelet collocation method (HWCM). So, from the numerical result of Table 4, 

Table 5 and Table 6,   the one that have small number N takes small computational time, and fast convergence. However, 

the one that have large number N takes more computational time, low convergence and gives more accurate results.  

4.   CONCLUSION 

In this paper, the Haar wavelet collocation method for solution of linear integral equation is proposed. Amethod of 

solution which is applicable for different kind of integral equations. Fredholm and Volterra integral equations are worked 

out. The benefits of the Haar wavelet collocation method are sparse matrices of representation, fast transformation and 

possibility of implementation of fast algorithm. The numerical results obtained by the Haar wavelet collocation method 

are excellent agreement with the exact solutions. Maximum absolute error (EJ) and norm error (E2) shows the better 

performance of the proposed method. The numerical results of the given test problem shows, as the values of the number 

N increases, maximal level of resolution (J) increases, error function (Maximum Absolute Error) decreases and 

computational cost increases and we would get more collocation points and also more accurate results. However, the one 

that have a small number N are given fast convergence and saves computational time. Furthermore, numerical results of 

all different test problems could be implemented in MATLAB R2015a software. Finally, from the result of the given test 

problems, we obtain the performance Haar wavelet collocation method are more efficient and accurate in the comparison 

to the exact solution. 
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